Numerical Solution of Non-steady Flows, Around Surfaces in Spatially and Temporally Arbitrary Motions, by using the MLPG method

نویسندگان

  • R. Avila
  • S. N. Atluri
چکیده

The Meshless Local Petrov Galerkin (MLPG) method is used to solve the non-steady two dimensional Navier-Stokes equations. Transient laminar flow field calculations have been carried out in domains wherein certain surfaces have: (i) a sliding motion, (ii) a harmonic motion, (iii) an undulatory movement, and (iv) a contraction-expansion movement. The weak form of the governing equations has been formulated in a Cartesian coordinate system and taking into account the primitive variables of the flow field. A fully implicit pressure correction approach, which requires at each time step an iterative process to solve in a sequential manner the equations which govern the flow field, and the equations that model the corrections of pressure and velocities, has been used. The temporal discretization of the governing equations is carried out by using the Crank-Nicolson scheme. The moving Least Squares (MLS) scheme is used to generate, in a local standard domain, the shape functions of the dependent variables. The integration of the entire set of flow equations, including those equations of an elliptic elastostatic model which is used to update the position of the MLPG nodes in domains with moving surfaces, is carried out in the local standard domain by using the Gauss-Lobatto-Legendre quadrature rule. The weight function used in the MLS scheme, and in the weighted residual MLPG process, is a compactly supported fourth order spline. We conclude that the MLPG method coupled with a fully implicit pressure-correction algorithm, is a viable alternative for the solution of fluid flow problems in science and engineering, particularly those problems characterized by non-steady fluid motion around flexible bodies with undulatory or contraction-expansion movements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids

This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...

متن کامل

Thermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

The effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method

The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010